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ON THE EQUIVALENCE OF TWO-DIMENSIONAL AND

THREE-DIMENSIONAL MULTIBEAM MICROWAVE LENSES

INTRODUCTION

Microwave lenses, as well as optical lenses, are designed and analyzed by means of geometrical
optics. Their focusing properties are determined by optical path length without regard to wave-
length or electrical phase. In this report we consider a class of lens-fed multibeam arrays designed
with geometrical optics. We show that these lens-array systems can be equivalent to network-fed
multibeam arrays, which are specified strictly in terms of their electrical phase properties. Through-
out this report equivalent is taken to mean "having the same scattering matrix," particularly with
regard to the transfer coefficients of a matched 2N-port device. This relationship can be referred to
as a lens-network equivalence. Then we recall a property of multibeam arrays which makes certain
network-fed multibeam linear and planar arrays equivalent. This relationship is a linear array - planar
array equivalence. These two relationships can be applied to show the equivalence of two-dimensional
and three-dimensional lenses. The principal practical result of this final equivalence relationship is
that, under appropriate conditions, a three-dimensional lens can be used to feed a linear array or a
two-dimensional lens can be used to feed a planar array. For the former case it will be seen that the
maximum dimensions of the lens structure are reduced greatly from the conventional arrangement,
in which a two-dimensional lens is used to feed a linear array.

The background of the problem is described and descriptions of microwave lenses and networks
are given in the next section. The third section is devoted to the definition of lens-network equiva-
lence. The fourth section discusses the constraints on multibeam arrays. The fifth section applies
the array constraints to lenses to arrive at the final equivalence relationship. In the sixth section, a
practical example is presented, with a discussion of the limitations of the concept.

BACKGROUND

The class of microwave lenses being considered in this report is exemplified by the bootlace
configuration (also known as the Gent or Rotman lens) shown in Fig. 1 [1,2] . This antenna system
contains three arrays. One array forms the aperture of the system; another is connected to the feed
ports; and the third, the lens array, is internal. The lens and feed arrays face each other across an
open, geometrical optical-transmission region. The lens and aperture arrays are connected by
transmission lines. Thus, the overall system contains two transmission regions, one unconstrained
and one constrained. The lens structure consists of the feed and lens arrays and their enclosed trans-
mission region. The size of the lens is the size of this region. Each feed port corresponds to a direc-
tive radiation pattern from the array. The object of the lens design is to make the collimation as
good as possible for all beam positions.

In a two-dimensional (2D) configuration, all the arrays are linear, either curved or straight, and
the transmission region is generally planar. In order to achieve improved performance, Wild has used
a spherical geodesic transmission region [3] . The 2D bootlace lens generates multiple beams in a
plane including the aperture array.

Manuscript submitted April 24, 1981.
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Fig. 1 - Gent/Rotman bootlace lens (2D)

In a three-dimensional (3D) configuration, all the arrays are distributed on surfaces, and the
transmission region is a volume. The 3D bootlace lens generates multiple beams in two angular
dimensions. The locations of the beams in sine space correspond to the locations of the elements
in the feed array.

We have seen that these lenses are designed on the basis of geometrical optics. However, the
spacings and locations of the radiators in the various arrays are determined on the basis of their
diffraction characteristics, and of course the radiation patterns of the multiple beams involve the
phases of the elements in the aperture array and the computation of, at the least, a scalar diffrac-
tion integral. Thus, although the geometry of the lens, in terms of the surfaces and transmission
line lengths, is determined by geometrical optics, the performance is computed by means of
physical optics.

It is also necessary to define the networks we are discussing. The most widely known multi-
beam network is the Butler matrix, which is shown in Fig. 2 for N = 8 [4,5]. Other network config-
urations can be used, such as those of Blass and Nolen [6,7] . All of these networks approach ideal
performance, defined by matched input impedance at all ports for the case in which all ports are
properly terminated, perfect isolation among all ports on each side of the network, uniform power
division between an input and all output ports, no loss of energy, and uniform phase progression
among the output ports for any input port. When one of these networks is connected to a linear
array, a perfect multibeam antenna system results: A set of antenna patterns with maximum gain
and minimum angular spacing between adjacent beams is obtained;
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Fig. 2 - Butler-matrix network for N = 8

NETWORK-LENS EQUIVALENCE

The arrays used in the bootlace lens of Fig. 1 must be designed so that each element has a pat-
tern with appropriate coverage and gain. Thus each element of the feed and lens arrays must be
designed so that its coverage is limited to the array it is facing. In addition, each array must be
designed so that it absorbs without reflection any energy incident upon it from the opposite array.
The aperture array must radiate without reflection all energy fed to it by the lens array. The element
spacings, using the above criteria, are given by

x s= ~~~~~~~~~~~~~~(1)
sin 01 - sin 02

where X is the wavelength and 01 and 02 are the limits of coverage relative to the normal to the array
at the element [8]. In general, 01 is positive and 02 is negative. A practical lens will not meet these
requirements perfectly. Real radiators invariably exhibit some impedance mismatch, mutual cou-
pling, and pattern degradation. However, the departure from perfection can be sufficiently small
that these lenses are attractive in many applications.

This author has pointed out that a lens with its arrays designed according to Eq. (1) exhibits
performance equivalent to that of a multibeam network with the same number of ports [9]. That is,
the transfer coefficients of the lens and the network are identical within the tolerance set by the
collimating imperfections inherent in the lens. No proof was given for this claim; numerous compu-
tations and measurements have borne out the network behavior of appropriately designed lenses.
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MULTIBEAM PLANAR ARRAYS

This author has discussed the formation of multiple beams from planar arrays [10]. It was
shown that a planar array can be fed by an ideal multibeam network to form multiple beams if
the array satisfies a "tiling" condition. The tiling condition requires that the array can cover the
infinite lattice of element positions, with no gaps or overlap, by translation of the array, as shown in
Fig. 2. It was shown that, in some cases, the planar array can be fed by a linear-array feed network.
In particular, all regular hexagonal arrays with a triangular-element lattice and all square arrays with
a square-element lattice fall in this category. Thus, the same phase distributions can be used for
these planar arrays to form multiple beams as are used for a linear array with the same number of
elements. This linear-planar array equivalence is discussed in the appendix.

2D-3D LENS EQUIVALENCE

We are now at the point of establishing the equivalence relationship that is the subject of this
report, the equivalence of 2D and 3D lenses. Figure 3 shows the various networks, lenses and arrays
and their relationships. It is now possible to apply a syllogistic argument that things equivalent to
the same thing are equivalent to each other.

From the standpoint of the phase distributions required to form multiple beams, we have seen
that linear and planar arrays are equivalent. Thus, the same network can feed either array. In addi-
tion, a multibeam network is equivalent to a 2D lens. Therefore, we conclude that a 2D lens can
feed either a linear or a planar array and that, since a 3D lens can feed a planar array, a 3D lens can
also feed a linear array. That is, under the proper conditions a 3D lens can have the same network
characteristics as a 2D lens. These conclusions are illustrated in Fig. 4.

t / | ARRAYS | | LENSES|

PHYSICAL CONNECTION
- - - EQUIVALENCE RELATIONSHIP

Fig. 3 - Network/lens/array relationships

PHYSICAL CONNECTION

- -- EQUIVALENCE RELATIONSHIP

Fig. 4 - 2D-3D lens equivalence
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We now consider the detailed configuration of a 3D lens that will be equivalent to a given 2D .
lens. In the appendix the method for feeding a planar array with a linear-array network (or equiv- :
alently a 2D lens) is outlined. The final derivation in the appendix indicates the beam locations
that will be obtained from the array-network interconnection. We note that the beam location is
easily and directly related to the feed location for either a 2D or a 3D lens. Thus, the lattice of
beam locations is duplicated by the lattice of feed positions. In the case of the hexagonal array, the
beam locations form a hexagonal array which is "twisted" relative to the lens array by an angle
7r/3 - 0, where 0 is given by Eq. (A12) in the appendix. The size of the feed array is selected so that
the path lengths through the lens to the aperture array result in the proper phase distribution at the
design frequency. We know the required phase distribution from the derivations of the appendix,
and all phases are constrained to be contained within the range 0 to 27r. In determining the required
path-length differences, we must take care to avoid the discontinuous phase steps that may be in-
herent in a modulo 27r phase distribution. Figure 5 illustrates this process for a 19-element hexagonal
array. Figure 5(a) is based on Fig. A4(a) in the appendix, except that the integers have not been
constrained to modulo 19 and the feed location is indicated. For N = 19, the twist angle of the
feed array relative to the lens array is 6.590. Figure 5(b) shows the next feed location out from the
center of the lens, together with the corresponding integer aperture distribution. We recall that the
element phases are given by the integers times 2ir/N. This multiplying factor translates to X/N for
path length. Thus, the path-length differences for the feed locations of Figs. 5(a) and 5(b), relative
to elements a and b, are 20X/19 and 40X/19, respectively. This information, together with a knowl-
edge of the twist angle and the geometry of the lens, is sufficient to design a 3D lens that is equiva-
lent to a 2D lens.

A PRACTICAL EXAMPLE

In 1975 the Federal Aviation Administration, in carrying out the development of the Micro-
wave Landing System (MLS), investigated the use of microwave optical electronic scanning antenna
configurations. The question posed to NRL workers at that time was whether there was any tech-
nique available for reducing the size of the microwave optics relative to the array aperture with
which it was used. The largest apertures contemplated for MLS were about 3.7m (12 ft) long, and
typical 2D bootlace lenses for these apertures will have dimensions larger than this. No alternative

(i1 (i) @)b ()(3 i)b

(D (j) ( aD ®
FEED POSITION 1:FEED POSITION

(a) First feed position off axis (b) Second feed position off axis

Fig. 5 - Integer aperture distributions for 19-element hexagonal array
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design technique was found in 1975 in spite of intensive effort by workers in both Australia and
the U.S.

The equivalence relationship described in this report provides a means for feeding a multibeam
linear array with a lens that is much smaller than the array. The degree of this size reduction is
roughly estimated by considering that the elements of the feed and lens arrays of the 3D lens will be
spaced no more than one wavelength apart. Therefore, the diameter of the 3D lens will be about
,/NIt, whereas the aperture of the array will be about NX/2 in length. The ratio of lens size to
array size is about 2// N, and the relative size reduction is seen to increase with N. For N = 100
we would expect the lens to be about 1/5 the size of the array.

If the lens is air filled, if we have established the number of elements and the general lens
geometry, and if we impose symmetry on the feed and lens arrays, we can determine the lens
dimensions. Figure 6 illustrates the geometry of the lens. It is assumed that the arrays are hexagonal.
Symmetry dictates that the outer elements of the lens and feed arrays be at the same radius. It can
be shown from previously determined relationships that the maximum path length difference for
the first feed position off axis is

AL1 = 2r(2r + 1)X/N.

For the rth feed position off axis,

ALr = 2r2 (2r + 1)X/N.

We find that

La =iVS2 + 4R2 sin2 'y/2

and

Lb =/S2 + 4R2 cos2 y/2,

fb
R / EDGE ELEMENT

OF LENS ARRAY

EDGE ELEMENT R l
OF LENS ARRAY /

AXIS OF LENS

EDGE ELEMENT
OF FEED
ARRAY f

Fig. 6 - Geometry of edge elements of lens and feed
arrays for symmetrical lens
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where

S is the spacing between edges of the feed and lens arrays,

R is the radius of the feed and lens arrays,

L. is the distance between the edge feed element f and edge lens element a,

Lb is the distance between the edge feed element f and edge lens element b,

-y is the twist angle, S - ir/3.

Setting ALr = Lb - La, we obtain

2r2(2r + 1)X/N= V S2 + 4R2 cos2 y/2 - I+S 2 + 4R2 sin2 y/2. (2)

In Eq. (2) the known parameters are r, N, X, and Ay. If S, R, or SIR is specified, the lens dimensions
are determined.

This concept has been demonstrated experimentally. An air-filled 3D bootlace lens was fabri-
cated with 37-element hexagonal feed and lens arrays. The array elements are circularly polarized
conical spiral radiators. An external view of the lens structure is shown in Fig. 7, and a view of the

.Is.

-1 ' I

"->'l

.; I51 

79507(2)

Fig. 7 - Air-filled 3D lens for N = 37
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SHELTON

interior with one of the arrays is shown in Fig. 8. Equal-length coaxial cables are connected between
the lens-array ports and a 37-element linear array. The linear array consists of slotted waveguide
radiators. The system is designed to operate at 5060 MHz, the center of the MLS band. Figure 9
shows the lens-array assembly being tested on the NRL outdoor pattern range. Figure 10 is a plot
of the main beams of the patterns generated by the system. The dashed patterns are grating lobes.

Finally, we note that the equivalence relationships discussed and derived in this report, both
between lenses and networks and between 2D and 3D lenses, are valid only at a single frequency.
The desired network behavior of the lenses is obtained by transforming path-length differences into
phase differences. Since the path lengths do not change with frequency, the phase relationships
clearly will change with frequency. Furthermore, when 2D and 3D lenses are made equivalent, their
phase characteristics will also change with frequency, and they will change differently because the
path lengths for equivalent 2D and 3D lenses will be much different. Our original claim of lens-
network equivalence was based on appropriate spacing of the radiating elements in the arrays
making up the lens. This relationship, Eq. (1), involves wavelength and immediately introduces
frequency sensitivity.

These comments on frequency sensitivity should not be confused with other wide-band
characteristics of lenses. Since the lenses described here are based on geometrical optics, their
beam positions are invariant with frequency. This is sometimes a highly desirable characteristic.
Nevertheless, the lens-feed array is still a narrow-band one from the standpoint of its equivalence
to an ideal multibeam network, for which the beam positions change with frequency.

79507(3)

Fig. 8 - Lens interior
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Fig. 10 - Combined plot of all beams from 37-element linear array
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APPENDIX

Linear-Planar Array Equivalence

This analysis of planar arrays is based on the following assumptions:

* The feed system is a 2N-port multibeam network, with N input ports and N output ports
which are connected to the array, which becomes a Butler matrix for N = 2P.

* The N-element planar array is located on a regular infinite lattice.

* The array distribution is uniform in amplitude (which follows directly from the use of a
Butler-matrix-like feed network) and has linear progressive phases in both dimensions so as
to produce a collimated radiation pattern with maximum gain.

This analysis proceeds in several steps. The linear-array feed networks are defined and repre-
sented. Then a numbering procedure for the infinite lattice is presented. Then a procedure for de-
fining a specific array is derived. Finally, the beam locations corresponding to a particular array
excitation are determined. Results are given in detail for regular symmetrical hexagonal and square
arrays.

It is first necessary to define the operation of the feed network. The transfer matrix of the
network is defined as

Eo k =TkkEi

where EjQ is the Qth input, E0 k is the kth output (feeding the array elements), and Tkk is the trans-
fer coefficient. We choose, without loss of generality,

Tk 1 e(k- l )0, k 1, . . .,N, Q 1,. ..,N. (Al)

where ON = 2r/N. Since the amplitude is constant for all Tk 2' it is possible to express the transfer
matrix in terms of only the phase. If the exponent is used and the factor ON is omitted, the matrix
portion of TkQ becomes an array of integers. If we restrict the phase to the range 0 < ¢ < 2r, the
term (k - 1)(Q - 1) becomes (k - 1)(k - 1)mod(N), and the highest integer is N - 1. The resulting
integer matrix is defined as TN, and an example for N = 5 is

0 1 2 3 4

T5 0 2 4 1 3 . (A2)

0 3 1 4 2

0 4 3 2 1

Note that every column of TN is a linear progressive phase distribution, as is required. Now,
since every column provides a progressive phase distribution, it suffices in analyzing arrays fed by
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this network to use any one that contains all the integers. This is the crucial point on which this
analysis depends.

We now consider an infinite square lattice, representing possible radiating element positions.
If we are to locate an N-element array on the lattice, the excitation of each element in the lattice
can be described by an integer, n = 0 ... N - 1, where n corresponds to (lI/VFN)e'l '. To satisfy
the third assumption, concerning the progressive phase in both lattice dimensions, we are constrained
to place integers on the lattice.

Figure Al illustrates two such lattices for a seven-element array. The shape of a planar seven-
element array can be obtained by selecting any seven elements, so long as they include all possible
integers. The resulting array can then be fed by a 2N-port multibeam network to form seven identi-
cal patterns, each with maximum pattern gain. Some of the possible array shapes are also shown in
Fig. Al. The tiling condition follows directly: Any allowable multibeam planar array can cover the
infinite lattice. Completely and without overlap, by translation.

We must next determine how a given planar array will be configured for a multibeam appli-
cation. Specifically, how will the 2N-port network be connected to the N-element array? The
procedure for determining these connections is as follows.

The given N-element planar array is placed on the lattice with at least two other identical
arrays placed around it in a tiling arrangement. Corresponding elements are chosen on three contig-
uous arrays and are assigned the same integer, say zero for simplicity. This situation is illustrated
in Fig. A2 for a seven-element array. We now seek a set of integers for the remaining lattice posi-
tions that satisfies the progressive phase requirement. We accomplish this by specifying the integral
increment in the two lattice dimensions as nX and ny . The equations relating nx and ny are

nxXl + ny Y1 = Np

and

x 2 ny 2 Nq, (A3)

where (X1, Y 1) and (X2, Y2) are components of the vectors R1 and R2 defining the translations
used to achieve the tiling condition. For the example of Fig. A2, R1 = (3, 2) and R2 = (1, 3). The

~~~ ~~~0_____ __ rF--I_ _, __ L_

®Oi@ 0 XcoQ
'--W - -- - - Ic

() (E) ( (i O O ° : 00 0
,@@@1 @@@ C,(y__1 -

'0(0C( 0 00 |00
Fig. Al - Lattices for N = 7 with Fig. A2 - Tiling arrangement for

possible array shapes seven-element array, showing
translation vectors
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parameters p and q are integers that determine which of the N possible distributions is obtained;
it is usually satisfactory to set p = q = 1. Equations (A3) then become

3nx + 2ny = 7

and

nx + 3My = 7, (A4)

for which nx = 1 and ny = 2, and the resulting array is shown in Fig. A3(a). Although the array of
Fig. A3(a) on its square lattice does not appear particularly interesting, skewing the grid to trian-
gular as indicated in Fig. A3(b) suggests that a seven-element array is the first in a family of regular
hexagonal arrays.

The network connection rules for the family of regular hexagonal arrays is readily found if we
examine the geometry of the tiling arrangement. If we specify the size of the hexagonal array by r,
the number of rings surrounding the center element, then the following results are obtained:

N = 3r2 + 3r + 1,

Xi = 2r + 1,

Y 1 = r + 1 ,

X2 = r

Y2 = 2r + 1 ,

nX = r 

and

ny =r+1. (A5)

Furthermore, we can take nX = mr and ny = m(r + 1), where m 1, . ..,N- 1, as long as the
lattice is still covered by the full range of integers from 0 to N - 1. Figure A4 shows interconnection
diagrams for 19- and 37-element arrays. If we try all possible values of m, we find six distinct inter-
connection diagrams for the 37-element array, three for the 19-element array, and one for the

00 ~)00
0I )0(_) 0 0
@) (3 (@ (D

(a) Square (b) Triangular
lattice lattice

Fig. A3 - Seven-element array
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0 0 0 0 G (

(b) 37-element array

Fig. A4 - Interconnection diagrams for hexagonal arrays

7-element array. By distinct interconnections we mean that we discard all rotations and mirror
images. Allowed values of nX and n Y are listed in Table Al for the first four hexagonal arrays.
We are led to conjecture that the number of distinct interconnections is r(r +1)/2.

Table Al - Allowed Values of nx and nY

N r nX nf

7 1 1 1

19 2 2 3
4 6
1 7

37 3 3 4
6 8
9 12
2 15
5 13
1 10

61 4 4 5
8 10

12 15
16 20

7 24
2 26

11 21
6 17
1 13
3 19
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A similar analysis can be carried out for square arrays. In this case, it is found that the tiling
arrangement is not unique, because the arrays are aligned in strips which can slide relative to one
another. However, a tiling arrangement with all possible integers which can be fed by a conven- r-
tional multibeam network or a 2D lens can also be achieved by offsetting one strip of square arrays
by one element relative to the next, as shown in Fig. A5 for N = 16. If the square array has r ele-
ments on a side, so that N = r2 , then the desired tiling arrangement can always be achieved by
setting

RI = (X 1 , Y1 ) = (r, 0)

and

R2 = (X2 , Y2) = (-1, r) -

These parameters yield

nx r

and

ny =1. (A6)

Furthermore, as in the case of the hexagonal array, we can take nx= mr and ny = m, where
m = 1, . . ., N - 1, as long as the lattice is still covered by the full range of integers from 0 to N - 1.

We now consider the locations of the beams generated by the hexagonal and square arrays
defined by Eqs. (A5) and (A6). If we know the phases of a small triangle of elements in the array,
we can locate the beam. The geometry of these triangles is shown in Fig. A6(a). We locate the
beams in a Cartesian sine space with coordinates defined as

Ux = (27rs/X) sin Ox

and

uy = (27rs/X) sin 0 .

0:0 0 0 ;I0

Fig. A5 - Tiling arrangement for
square array with N = 16

15



SHELTON

We also define radial sine-space coordinates as

Ur= +U2 = (2irs/X) sin

and

tan 0 = u ./UX .

The geometry of rays approaching the triangular arrays is shown in Fig. A6(b). The equations for the
beam location in terms of a and (, which are integers, are

2irf 2irs
N = X sin r cos (7r/3 - ) = ur cos (1r/3 - 0)

and

27rue 27rs
r 2= XsinO cos ¢l = ur cos ¢

N x r rA8

for the triangular lattice, and

2irg =2Xrs sin 0 r sin 0 = ur sin 0
N x rr

and

27ra 2irs

N = sin Or cos 0 = ur cos 0

for the square lattice. Equations (A8) are solved for ur and 0 to yield

((3/a) - cos ir/3
sin 7r/3

and

Ur = 27ra/N cos 0 = 27ro/N cos (7r/3 - k)

0 0
RAY
PATH

L<

NORMAL TO ARRAY -

ELEMENT WITH PHASE 0

er / RAY PATHS

SCos(ir/3- /
S cos SI;~~~ m
) ~a a

(a) Geometry of ray (b) Ray-path projections in plane normal to array

Fig. A6 - Geometry of rays for given array phase distribution
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for the triangular lattice. Equations (A9) are solved to yield

tan (3/a

and

Ur = 27ra/N cos= 27r(/N sin (All)

for the square lattice.

The nearest grating-lobe maxima for the beam located at ux = uY = 0 are obtained for the
triangular lattice for the following values of a and (:

a = ±N, (= 0

z = =N;

and

a = 0, (=±N.

Equations (A10) locate these grating lobes at Ur = 4i/xf~ and i = 0, 7r/3, 27r/3,. .. ,S7r/3.

Similarly, the nearest grating lobes for the square lattice are obtained for

a = ±N, j= 0

and

az = 0, (= ± N.

Equations (All) locate these grating lobes at ir = 2r and =0, 7r/2, 7r, 37r/2.

Using Eqs. (A5) and (A6) to define ca and (3, we obtain the following beam locations:

=r,

( 2r + 1,

Ur = 27rI(.Vsin Vr/3),

and

cos =(r sin 7r/3)/VFN- (A12)

for the triangular lattice and

oetr,

(= 1,

tan l = 1/r,
and

Ur 27rVJKWI/IN (A13)
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for the square lattice. These results are illustrated in Fig. A7 for a 19-element hexagonal array and a
16-element square array. The beams are numbered according to how far off the axis of the 2D lens
the feed port corresponding to the given beam is located. It is seen from Eqs. (A10) and (All) that
if we move away from the axis of the 2D lens we move away from the origin of sine space on a
radial line; that is, 0 stays constant and ur increases directly with a or (. By doing so, we are able to
locate and number all beam positions.

Two features of the beam locations shown in Fig. A7 are noteworthy. For the hexagonal array,
the lattice of the beam locations is rotated relative to that of the array. The "twist" angle is
-y = q - 7r/3, for which we find sin y = 1/2N/IN. The twist relationship will be important in arranging
the feed and lens arrays of 3D lenses for use with linear arrays. Furthermore, the integer arrange-
ment for beam locations corresponds to one of the arrangements shown in Table Al for element
assignments. For the square array, the lattice of the beam locations is distorted, with the horizontal
rows of beams being tilted up by an angle q. The dashed lines separate cells of grating lobes. Thus,
in a practical application we would probably desire to locate the visible region within the central
cell. Note that for the hexagonal array it would be possible to locate the circular visible region so as
to include only one maximum of all 19 beams. For the square array, however, beams +2, +6, and
±8 have two maxima equidistant from the origin. It is not possible to obtain single maxima for these
beams without translating all beam locations relative to the origin.

y4 0 / uy; |

7 i2\5 i *o4
0 0~~~~~~~~~~~~ 

119 02*\ 6 7

@8 \ I -6

Y 2½0 I 9U

(a) 19-element hexagonal array (b) 16-element square array
Fig. A7 - Beam locations in sine space for square and hexagonal arrays
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